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Abstract. We consider a simple microscopic model for a solid body and study the problematic
nature of micro–macro transitions. The microscopic model describes the solid body by a many-
particle system that develops according to Newton’s equations of motion.

We discuss various Riemannian initial value problems that lead to the propagation of
waves. The initial value problems are solved directly from the microscopic equations of motion.
Additionally, these equations serve to establish macroscopic field equations.

The macroscopic field equations consist of conservation laws, which follow rigorously from
the microscopic equations, and of closure relations which are completely determined by the
distributions of the microscopic motion. In particular, we consider three kinds of closure relations
which correspond to three different kinds of equilibrium.

It turns out that closure relations cannot be given appropriately without relating them to the
initial conditions, and that closure relations might change during the temporal development of
the initial data, because the body undergoes several transitions between different states of local
equilibrium. In those examples that we have considered, the macroscopic variables of mass density
and temperature do not constitute a unique kind of microscopic motion in equilibrium.

1. Introduction

1.1. Scope of this study

A thermodynamic process in a given body is described in thermodynamics by means of an
initial- and boundary value problem for a system of partial differential equations. Usually
such a system is established as follows. There are equations of universal character, i.e. they
are valid for any material. Among these equations the conservation laws of mass, momentum
and energy are particularly important. The universal equations are supplemented by so-called
constitutive equations, which relate the basic variables to those quantities which appear in the
universal equations but are not basic variables.

The constitutive equations represent the closure of the open scheme of universal equations.
Thus, constitutive equations are often called closure relations. Usually the closure relations
are not related to the initial and boundary data, but are exclusively related to the considered
material. The notion ‘constitutive equation’ is due to this reason.

In this study we show by means of a simple example that the choice of the appropriate
closure relations might be intimately influenced by the initial and boundary data, a fact which is
in contrast to common belief. Furthermore, it may even happen that the temporal development
of the initial data requires a change of the adequate closure relations during the thermodynamic
process.

0305-4470/00/102097+33$30.00 © 2000 IOP Publishing Ltd 2097
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For the demonstration of this statement we consider an atomic chain in one dimension as
a simple model for a solid body. On the microscale we describe the microscopic motion of
the individual atoms by Newton’s equations of motion. We solve these equations exclusively
for macroscopic Riemannian initial data. However, to solve Newton’s equations we need
microscopic initial data. How these data can be prepared will be explained in sections 8.1, 9.2
and 9.5. We restrict our interest to Riemannian initial data that lead to the propagation of
waves. Initial data which initiate diffusion-like motion will be studied in a forthcoming paper.

The derivation of field equations must be split into two steps. In a first step we start
from Newton’s equations and show that they imply macroscopic equations of balance. In
these equations there appear macroscopic quantities like mass-, momentum-, energy density,
pressure and heat flux, and these are written as mean values in time and space in terms of
the so-called window function. From the macroscopic point of view the window function
should be so small that its support is concentrated around the point(t, x), where we want to
compute the macroscopic fields, whereas from the microscopic point of view the support of the
window function should contain enough particle trajectories in order to guarantee stochastical
convergence to the macroscopic fields.

In this study we consider the fields of mass densityρ(t, x), velocityv(t, x)and temperature
T (t, x) as the basic variables. We study pure initial value problems with Riemannian initial
data forρ(0, x), v(0, x) andT (0, x).

In a second step we supplement the equations of balance by closure relations which relate
the basic fields to the energy densityρe(t, x), the pressure tensorpik(t, x) and to the heat flux
qk(t, x).

We consider three kinds of possible microscopic motions that lead in turn to three different
classes of closure relations:

(i) Cold closure. The thermal motion, i.e. stochastic vibrations of the atoms, is completely
ignored here.

(ii) Thermal closure. There is thermal motion of displacements and velocities of the atoms,
which are both completely uncorrelated. This case is well known to thermodynamicists.
Their closure relations often rely on the assumption of a unique local thermal equilibrium.

(iii) Oscillator closure. There is thermal motion of displacements of two-particle oscillators.
The corresponding velocities are determined by the microscopic equations of motion and
are thus correlated to the displacements.

It is important to consider all three kinds of microscopic motions, because they might
appear simultaneously in arbitrary large regions of space and time. Moreover, the three kinds
of microscopic motions realize three different kinds of equilibria. Next we shall discuss these
facts in detail.

After solving Newton’s equations of motion for various given Riemannian initial data we
observed a quite surprising scaling behaviour of the resulting global solution. If the particle
numberN is sufficiently large, then the solution does not change when we inflate the space
x and the timet according toλx andλt with an arbitrary, positive scaling factorλ. Later on
we shall choose the scaling factorλ proportional toN , because this choice will be proved of
physical importance.

Before we discuss an important consequence of the scaling behaviour of a Riemann
solution, we give a new definition of the notion local equilibrium. Usually a material at
the macroscopic space–time point(t, x) is said to be in local equilibrium if the macrostate
of the material at that point is completely given by a distribution function of the microscopic
motion which has only the quantitiesρ, v andT as parameters.
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We prefer here a different definition†: an atomic chain at the macroscopic space–time
point(t, x) is said to be in local equilibrium if its microscopic motion, which is described by a
distribution function in the close vicinity of(t, x), can also be established globally independent
of space and time and is globally described by the same distribution function. In addition, we
require that arbitrary small disturbances of the microscopic motion do not lead to a change of
the distribution function.

Note that the new definition of local equilibrium does not contain any reference to the
quantitiesρ, v andT . In particular, it is not assumed that the characterization of an equilibrium
distribution function is given by a finite set of variables.

The processes that we consider in this study show that both definitions are not equivalent.
We proceed with the discussion of the consequences of the scaling behaviour of the

Riemann solution. When we combine the scaling behaviour with the new definition of local
equilibrium we are led to conclude that all three kinds of closure, namelycold closure, thermal
closureandoscillator closure, constitute local equilibria. Moreover, it is due to the observed
scaling behaviour of the Riemann solution of Newton’s equations of motion that these allow
only solutions that constitute local equilibria. Nevertheless, we will observe that the considered
closure relations are only sufficient for special Riemannian initial data. If this happens, it is
now obvious that an improvement of the macroscopic system to describe the development
of the initial data cannot be obtained by considering closure relations that take care of more
variables asρ, v andT .

Next we characterize the mathematical and thermodynamical structure of the considered
macroscopic systems. All three closure relations lead to symmetric hyperbolic systems. For
each system we identify an entropy function that is also defined in terms of microscopic
quantities. However, the entropy is not calculated here from Boltzmann’s famous formula
which relates the entropy to the number of microstates that can realize a given macrostate.
Instead we ground the entropy on the Pfaffian form between energy, pressure, density and
temperature. All these quantities have simple uniquely determined microscopic representations
and induce in the three cases uniquely a microscopic representation of the entropy.

In particular, theoscillator closurewill thus lead to an entropy that is a rigorous
consequence of Newton’s microscopic equations of motion.

1.2. The organization of the paper

Sections 2–6 deal with a many-particle system which consists ofN structureless atoms whose
dynamics is described by Newton’s equations of motion. These are supplemented by pairwise
interaction potentials.

The microscale is related to the macroscale by the so-called window function which is
defined in section 3. The window function maps the microscopic trajectories to a macroscopic
point in time and space, and it is the central quantity that enables the calculation of macroscopic
mean values of microscopic observables with respect to time and space.

In sections 4 and 5 we define a general class of mean values and in particular the basic
quantities mass-, momentum- and energy density. General equations of balance and especially
the conservation laws will then be established and in turn we may identify the corresponding
fluxes.

In section 6 we formulate the general closure problem and additionally we identify the
velocity dependent parts of the constitutive quantities.

In sections 7.1 and 7.2 we reduce the obtained results to the one-dimensional atomic chain
as a simple model for a one-dimensional solid body.

† The given definition requires that there are no forces of gravity.
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Section 7.3 is of great importance. Here we introduce different time and space scales for the
microscale and the macroscale, respectively. The microscopic time and space units are related
to properties of the pair potentials. The units of macroscopic time and space regions result
from a given scaling parameter which is the same for time and space and is proportional to the
particle numberN . This guarantees that wave speeds become independent ofN and restricts
the study to pure wave propagation. Furthermore, this kind of scaling induces macroscopic
fields which also become independent ofN if N is sufficiently large.

In sections 8–10 we introduce the three different closure assumptions and study their
appropriateness. In section 8 we start with thecold closurethat ignores thermal motion. We
show that one can formulate Riemannian initial data so that the resulting macroscopic system,
which considers only the mass density and the velocity as variables, agrees in some sense
with the direct solution of the microscopic equations. However, it will also turn out that a
temperature field develops and thus must be taken into account.

At the beginning of section 9 we introduce the temperature as the mean kinetic energy of the
thermal motion. Hereafter we define global thermal equilibrium, and prepare the atomic chain
according to that definition. The resulting distribution function will then be used to establish
the thermal closure, which assumes in addition local thermal equilbrium. In sections 9.5
and 9.6 we consider another Riemannian initial value problem in order to demonstrate that the
assumption of local thermal equilibrium is in general not realized by the microscopic motion.
Instead we observe that the distances and velocities of the atoms are distributed by the so-called
oscillator motion, which is discussed in detail in section 10.

In section 10 we verify that by quite natural initial data it is possible to generate a kind
of oscillator motion, where theN atoms move with the same frequency inN/2 oscillators.
This kind of motion constitutes a second equilibrium which can be realized by the same values
of mass density and temperature that we used to create thermal motion. The corresponding
distribution functions serve to establish theoscillator closure.

Next we consider a further Riemannian initial value problem which deviates only slightly
from the one that served to motivate theoscillator closure, and in fact the temporal development
of the macroscopic fields looks similar. However, from the known microscopic data we
obtain new distribution functions which are neither pure thermal nor pure oscillator functions.
Instead we observe a transition from pure thermal motion to some kind of oscillator motion.
Nevertheless, all these kind of motions constitute local equilibria.

This result is in contrast to the case of the Boltzmann gas, which has a unique equilibrium
distribution, namely the Maxwellian. The analogue closure problem leads to the hyperbolic
system of Euler equations. This system was studied and solved in [1,2].

It is due to the presence of permanent strong interaction forces between the atoms that
the solid behaves differently and cannot be described macroscopically by a single hyperbolic
system. The thermal and the oscillator motion yield two possible examples.

In a series of papers [3–6] Masaru Sugiyama and collaborators report on a serious and
careful study on the same subject. However, their procedure and intention is quite different
from ours. Sugiyama also starts from Newton’s equations for the one-dimensional atomic
chain and their pairwise interaction potential is qualitatively the same as that we have used,
but the closure problem is solved completely differently.

Note that we derive rigorously from Newton’s equations the macroscopic conservation
laws and the corresponding microscopic representations of macroscopic quantities. In
the next step we introduce the various closure relations. By contrast, Sugiyama and co-
workers considered only one closure relation, which was given by a distribution function of
Gaussian type forN independent atoms. This function was used to reduce the problem of
dealing withN coupled Newton equations to a system of only five coupled equations for
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those five unknowns that appear in the Gaussian-type distribution function as macroscopic
parameters.

2. Newtonian dynamics of structureless particles

We consider a body consisting ofN structureless atoms. These are called particles from
now on. All particles have the same massm, and they are indexed by small Greek letters
α, β, . . . ∈ {1, 2, . . . , N}. At time t > 0 the particles are located at positionsxα(t) and they
have velocities ˙xα(t).

At any timet the microstate of the body,γN , is completely described by the 6N positions
and velocities

γN(t) = (x1(t), ẋ1(t), . . . ,xN(t), ẋN(t)). (1)

The dynamics of the microstate is determined by Newton’s equations of motion

mẍαi = Gα
i +

N∑
β=1

K
αβ

i . (2)

A particleα is subjected to a total forceKα
i which is decomposed into the external forceGα

i

and the interaction forceKαβ

i betweenα and any other particlesβ. The external force may
include the inertial forces. In this study we consider only interaction forces that can be derived
from a pair potentialϕ: R+

0 → R. In particular, we choose a potential function of the so-called
Lennard-Jones type, which will be used for numerical examples later on:

ϕ(r) = 1

8

1

r4
− 1

4

1

r2
. (3)

Thus the interaction force has forα 6= β the explicit form

K
αβ

i = −
∂ϕ(|rαβ |)
∂xαi

= ϕ′(|xβ − xα|) x
β

i − xαi
|xβ − xα| (4)

whererαβ = xβ − xα. Obviously (4) satisfies Newton’s third law,actio = reactio:

K
αβ

i = −Kβα

i . (5)

Therefore wedefinein additionKαα
i = 0.

3. The window function

We now introduce the window functionχ(t,x), which relates the microscale to the macroscale.
The functionχ opens in space–time by its finite support a window to the microscopic positions
and velocities of the particles. Later on we shall establish the micro–macro transition, where
we choose the supp(χ ) so that the window contains infinitely many particle worldlines from a
microscopic viewpoint. However, from a macroscopic viewpoint supp(χ ) shrinks to a single
point in space–time. In the next section the window function will be used to define macroscopic
quantities at timet and space pointx.

We provide the window function with the following properties:
(i) χ : R4→ R is continuous differentiable withχ(t,x) > 0.
(ii) supp(χ ) ⊂ (0,∞)× R3.
(iii)

∫ +∞
−∞ χ(t,x) dt d3x = 1.

We shall choose the support of the window function macroscopically small, but
microscopically very large so that the window still contains an enormous number of



2102 W Dreyer and M Kunik

microscopic trajectories. This is necessary in order to pass to the three thermodynamic limits
which will be considered in sections 8–10.

For each particle indexα we define

χα(ϑ, t,x) = χ(ϑ − t,xα(ϑ)− x) (6)

in order to formulate the following lemma, which yields the complete information for the
derivation of the conservation and balance laws.

Lemma. (i) The partial derivative ofχα with respect tot can be written as

∂χα

∂t
(ϑ, t,x) = −∂χα

∂ϑ
(ϑ, t,x)− ∂χα

∂xk
(ϑ, t,x)ẋαk (ϑ). (7)

(ii) The difference of two window functions with different particle index has the divergence
form

χα(ϑ, t,x)− χβ(ϑ, t,x) = ∂

∂xk

(
(x
β

k − xαk )
∫ 1

0
χ(ϑ − t,xα(ϑ)− x +µ(xβ − xα)) dµ

)
.

(8)

Proof. The proof of (i) follows immediately from the given definition ofχα(ϑ, t,x), and the
proof of (ii) starts with the identity

χ(ϑ − t,xα(ϑ)− x)− χ(ϑ − t,xβ(ϑ)− x)
= −

∫ 1

0

∂

∂µ
χ(ϑ − t,xα(ϑ)− x +µ(xβ − xα)) dµ. (9)

According to the chain rule we can transform theµ derivative into the divergence derivative
that occurs in (ii). �

4. The general equations of balance

Recall that the microstate of a body is given by the listγN of 6N positions and velocities.
For the description of the macrostate of the body we need a reduced list0NM of variables,
with NM � N . The most important case is the list05 which contains the five macroscopic
variables mass densityρ, momentum densityρv and energy densityρe. These are formed at
time t and at the space pointx by the definitions

ρ(t,x) =
∫ ∞

0

N∑
α=1

mχα(ϑ, t,x) dϑ

ρvi(t,x) =
∫ ∞

0

N∑
α=1

mẋαi (ϑ)χα(ϑ, t,x) dϑ

ρe(t,x) =
∫ ∞

0

N∑
α=1

(
m

2
ẋαi (ϑ)ẋ

α
i (ϑ) +

1

2

N∑
β=1

ϕ(|rαβ(ϑ)|)
)
χα(ϑ, t,x) dϑ.

(10)

The right-hand sides of (10) define volume densities of additive quantities, i.e. the total mass,
the total momentum and the total energy of the body can be represented by volume integrals of
the mass density, the momentum density and the energy density, respectively. The definitions
of these densities are very natural: a window, which is located at(t,x), is considered, and the
number density of particle trajectories within this window is multiplied with the massm, the
momentummẋαi and the energym2 ẋ

α
i ẋ

α
i + 1

2ϕ(|rαβ |) of a single particle, respectively.
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Table 1.

Oα
A O

αβ
A

A = 0, Mass m 0
A = 1, 2, 3, Momentum mẋαi 0
A = 4, Energy m

2 ẋ
α
i ẋ

α
i

1
2ϕαβ

Field equations for volume densities as variables rely on equations of balance which we
shall derive next. In order to exhibit the general structure and the microscopic origin of the
equations of balance, it is useful to first generalize definitions (10) and to formulate their
generic structure. From (10) we read off the generic form

uA(t,x) =
∫ ∞

0

N∑
α=1

(
Oα
A(ϑ) +

N∑
β=1

O
αβ

A (ϑ)

)
χα(ϑ, t,x) dϑ (A = 0, 1, 2, . . . , NM − 1).

(11)

The quantitiesOα
A andOαβ

A denote microscopic one- and two-particle observables, respectively:
see table 1, where we have introduced the abbreviationϕαβ = ϕ(|rαβ |) for β 6= α andϕαα = 0.
We shall now use the generic form (11) to establish general equations of balance for the
quantitiesuA. In this paper we consider only microscopic observables that may have the
following dependences:

Oα
A(ϑ) = Õα

A(ẋ
α(ϑ)) O

αβ

A (ϑ) = Õαβ

A (r
αβ(ϑ), ẋα(ϑ), ẋβ(ϑ)) (12)

i.e. the one-particle observableOα
A can at most depend on the velocity, while the two-particle

observableOαβ

A may depend on the velocities of the particlesα andβ and on their relative
distance.

Next we show that to each volume densityuA (A = 0, 1, 2, . . . , NM−1) there correspond
fluxesfAk, productionsSA and suppliesZA, so that among them the following equations of
balance hold:

∂uA

∂t
+
∂fAk

∂xk
= SA +ZA. (13)

We start from (11), and differentiateuA(t,x) at constantxwith respect to timet to obtain

∂uA(t,x)

∂t
=
∫ ∞

0

N∑
α=1

(
Oα
A(ϑ) +

N∑
β=1

O
αβ

A (ϑ)

)
∂χα(ϑ, t,x)

∂t
dϑ. (14)

The derivative of the window function is replaced by (7). Hereafter a partial integration with
respect to timeϑ is carried out, and after some rearrangements there results

∂uA(t,x)

∂t
+
∂

∂xk

(∫ ∞
0

N∑
α=1

(
Oα
A(ϑ) +

N∑
β=1

O
αβ

A (ϑ)

)
ẋαk (ϑ)χα(ϑ, t,x) dϑ

)

=
∫ ∞

0

N∑
α=1

(
dOα

A(ϑ)

dϑ
+

N∑
β=1

dOαβ

A (ϑ)

dϑ

)
χα(ϑ, t,x) dϑ. (15)

The expression under the divergence already gives the first contribution to the fluxfAk we are
looking for. Next we apply, according to (12), the chain rule to theϑ derivatives on the right-
hand side. For this purpose we define for each volume densityuA (A = 0, 1, 2, . . . , NM − 1)
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a correspondingN × N matrix MA with components((Mαβ

A )) which are formed by the
microscopic observables according to

M
αβ

A =
∂Õ

αβ

A

∂r
αβ

j

ṙ
αβ

j +
1

m

∂Õα
A

∂ẋαj
K
αβ

j +
1

m

N∑
γ=1

(
∂Õ

αβ

A

∂ẋαj
K
αγ

j +
∂Õ

αβ

A

∂ẋ
β

j

K
βγ

j

)
. (16)

The definition ofMA is only unique in those cases which have zero productions. We have
definedMA so that the observablesOα

A(ϑ) +
∑N

β=1O
αβ

A (ϑ) remain as a whole.

ByM [αβ]
A andM(αβ)

A we denote the antisymmetric and symmetric part ofMA, respectively.
We obtain from (15):

∂uA(t,x)

∂t
+
∂

∂xk

(∫ ∞
0

N∑
α=1

(
Oα
A(ϑ) +

N∑
β=1

O
αβ

A (ϑ)

)
ẋαk (ϑ)χα(ϑ, t,x) dϑ

)

=
∫ ∞

0

N∑
α=1

N∑
β=1

M
[αβ]
A (ϑ)χα(ϑ, t,x) dϑ +

∫ ∞
0

N∑
α=1

N∑
β=1

M
(αβ)

A (ϑ)χα(ϑ, t,x) dϑ

+
∫ ∞

0

1

m

N∑
α=1

(
∂Õα

A

∂ẋαj
Gα
j +

N∑
β=1

(
∂Õ

αβ

A

∂ẋαj
Gα
j +

∂Õ
αβ

A

∂ẋ
β

j

G
β

j

))
χα(ϑ, t,x) dϑ. (17)

The first expression on the right-hand side contains the antisymmetric part of the matrixMA

and can be written as a divergence, because we can apply the second part of the lemma from
section 3 to the identity:

N∑
α=1

N∑
β=1

M
[αβ]
A (ϑ)χα(ϑ, t,x) = 1

2

N∑
α=1

N∑
β=1

M
[αβ]
A (ϑ)(χα(ϑ, t,x)− χβ(ϑ, t,x)). (18)

Thus finally we end up with the following proposition.

Proposition. (i) If we define the fluxes, productions and supplies according to

fAk(t,x) =
∫ ∞

0

( N∑
α=1

(
Oα
A(ϑ) +

N∑
β=1

O
αβ

A (ϑ)

)
ẋαk (ϑ)χα(ϑ, t,x)

1
2

N∑
α,β=1

M
[αβ]
A (ϑ)r

αβ

k (ϑ)

×
∫ 1

0
χ(ϑ − t,xα(ϑ)− x +µrαβ(ϑ)) dµ

)
dϑ

SA(t,x) =
∫ ∞

0

N∑
α=1

∑
β

M
(αβ)

A (ϑ)χα(ϑ, t,x) dϑ

ZA(t,x) =
∫ ∞

0

1

m

N∑
α=1

(
∂Õα

A

∂ẋαj
Gα
j +

N∑
β=1

(
∂Õ

αβ

A

∂ẋαj
Gα
j +

∂Õ
αβ

A

∂ẋ
β

j

G
β

j

))
χα(ϑ, t,x) dϑ

(19)

then the following equations of balance are satisfied:

∂uA

∂t
+
∂fAk

∂xk
= SA +ZA. (20)

(ii) The macroscopic influence of the external forcesGα is represented by the suppliesZA,
while the interaction forcesKαβ contribute to the fluxesfA as well as to the productionsSA.

(iii) The antisymmetric partM [αβ]
A of the matrixMA, which is given in (16), will contribute

to the fluxes, while the productions are exclusively formed by the symmetric partM
(αβ)

A .

Note that the fieldsuA(t,x) andfAk(t,x), and alsoSA(t,x) andZA(t,x), are continuous
differentiable according to their definition via the window function. For that reason we can
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also establish global equations of balance. We consider a fixed volumeV and obtain from (20)
by integration and a subsequent application of Gauss’s theorem
d

dt

∫
V

uA(t,x) d3x = −
∮
∂V

fAk(t,x) dak +
∫
V

(SA(t,x) +ZA(t,x)) d3x. (21)

Later, after having carried out the closure of the system (20), the fieldsuA(t,x), fAk(t,x),
SA(t,x) and ZA(t,x) will be equipped with additional thermodynamic properties and
consequently may become discontinuous. When this happens we shall assume that the global
equation (21) is more fundamental than the system (20). Thus we shall still rely on the global
equations of balance (21) and seek for weak solutions.

5. The conservation laws of mass, momentum and energy

In the last section we started with the microscopic representations of the macroscopic volume
densities of mass, momentum and energy. After that we generalized these representations to
a general class of volume densities and derived the corresponding equations of balance. This
procedure allowed the identification of general fluxes, productions and supplies.

In this section we write down the special microscopic representations which are necessary
in order to describe the conservation of mass, momentum and energy. To this end we read off
from table 1 the generating microscopic observablesÕα

A andÕαβ

A for A = 0, 1, 2, 3, 4 and
insert these into expressions (19).

All productionsSA turn out to be zero. For that reason mass, momentum and energy are
called conserved quantities and their equations of balance are called conservation laws.

As was mentioned before, the external forces may include the gravitational force and the
inertial forces like centrifugal force and Coriolis force. Having understood their appearance
in the general equations of balance, we will not study these forces in detail. Thus, we assume
Gα = 0, which implies vanishing momentum and energy supplies. Furthermore, there is
obviously no mass supply.

The mass fluxf0k is equal to the momentum densityρvk. The momentum fluxfik and
the energy fluxf4k are denoted byPik andQk, respectively:

Pik(t,x) =
∫ ∞

0
dϑ

( N∑
α=1

mẋαi (ϑ)ẋ
α
k (ϑ)χα(ϑ, t,x)

− 1
2

N∑
α,β=1

K
αβ

i (ϑ)r
αβ

k (ϑ)

∫ 1

0
χ(ϑ − t,xα(ϑ)− x +µrαβ(ϑ)) dµ

)
(22)

Qk(t,x) =
∫ ∞

0
dϑ

( N∑
α=1

(
m

2
ẋαj (ϑ)ẋ

α
j (ϑ) +

1

2

N∑
β=1

ϕ(|rαβ(ϑ)|)
)
ẋαk (ϑ)χα(ϑ, t,x)

− 1
4

N∑
α,β=1

K
αβ

j (ϑ)(ẋ
α
j (ϑ) + ẋβj (ϑ))r

αβ

k (ϑ)

×
∫ 1

0
χ(ϑ − t,xα(ϑ)− x +µrαβ(ϑ)) dµ

)
. (23)

With these representations the conservation laws are
∂ρ

∂t
+
∂ρvk

∂xk
= 0

∂ρvi

∂t
+
∂Pik

∂xk
= 0

∂ρe

∂t
+
∂Qk

∂xk
= 0. (24)

In this study we do not consider more general cases than the five conservation laws, for which
we shall now discuss the closure problem.
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6. The general closure problem

We describe the macrostate of a body by the first five volume densitiesρ, ρv andρe. These
quantities are considered as the basic variables of the macroscopic continuum theory, and we
seek for a closed set of five field equations. These rely on the five conservation laws (24).

The general closure problem consists of finding relations that relate the fluxesPik andQk

in a material-dependent manner to the basic variables. However, these relations also include
universal parts, namely those that depend on the velocityv. We can identify these parts by
replacing the microscopic velocities ˙xα by so-called excess (or thermal) velocitiesCα, which
are defined as

Cαi (ϑ, t,x) = ẋαi (ϑ)− vi(t,x). (25)

In this way, the energy density and the fluxes decompose into velocity-dependent parts and
into parts which are invariant with respect to Galilean transformations:

ρe = ρ

2
v2 + ρu Pik = ρvivk + pik Qk =

((ρ
2
v2 + ρu

)
δik + pik

)
vi + qk.

(26)

The newly introduced quantitiesρu, pik andqk are called internal energy density, pressure
tensor and heat flux, respectively. They are defined as follows:

ρu(t,x) =
∫ ∞

0

N∑
α=1

(
m

2
Cαi (ϑ, t,x)C

α
i (ϑ, t,x) +

1

2

N∑
β=1

ϕ(|rαβ(ϑ)|)
)
χα(ϑ, t,x) dϑ (27)

pik(t,x) =
∫ ∞

0

( N∑
α=1

mCαi (ϑ, t,x)C
α
k (ϑ, t,x)χα(ϑ, t,x)

− 1
2

N∑
α,β=1

K
αβ

i (ϑ)r
αβ

k (ϑ)

∫ 1

0
χ(ϑ − t,xα(ϑ)− x +µrαβ(ϑ)) dµ

)
dϑ (28)

qk(t,x) =
∫ ∞

0

( N∑
α=1

(
m

2
Cαj (ϑ, t,x)C

α
j (ϑ, t,x) +

1

2

N∑
β=1

ϕ(|rαβ(ϑ)|)
)

×Cαk (ϑ, t,x)χα(ϑ, t,x)

− 1
4

N∑
α,β=1

K
αβ

j (ϑ)(C
α
j (ϑ, t,x) +Cβj (ϑ, t,x))r

αβ

k (ϑ)

×
∫ 1

0
χ(ϑ − t,xα(ϑ)− x +µrαβ(ϑ)) dµ

)
dϑ. (29)

Now we can reformulate the general closure problem. Instead ofρ, ρv andρe we considerρ,
v andu as basic variables and the new closure problem consists of finding relations that relate
the pressure tensorpik and the heat fluxqk in a material-dependent manner to the new basic
variables.

The main objective of the next sections is a comprehensive study of the closure problem for
a simple body: the one-dimensional atomic chain. This example serves to illustrate that there
is a very close relation of the closure problem to the initial value problem of the resulting field
equations. It will turn out that one cannot solve the closure problem appropriately without
paying attention to the kind of initial data for which the field equations are intended to be
solved.
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7. The one-dimensional atomic chain

7.1. Newton’s dynamics

The one-dimensional atomic chain consists ofN atoms with massm = 1 and with positions
at timeϑ ,

{x1(ϑ), x2(ϑ), . . . , xN−1(ϑ), xN(ϑ)} (30)

along one direction. The positions of the first and of theN th atom are fixed and given by

x1(ϑ) = 0 xN(ϑ) = L. (31)

The other atoms move according to pairwise nearest neighbour interaction. We recall the pair
potential given in (3):

ϕ(rα) = 1

8

1

r4
α

− 1

4

1

r2
α

with rα = xα+1− xα α = 1, 2, 3, . . . , N − 1. (32)

The numbers in the pair potential are chosen so thatϕ′(1) = 0 andϕ′′(1) = 1.
We do not consider external forces, and Newton’s equations of motion thus read

ẍα(ϑ) = ϕ′(rα(ϑ))− ϕ′(rα−1(ϑ)) α = 2, 3, . . . , N − 1. (33)

From a microscopic viewpoint the initial conditions for system (33) are given by the initial
locations

{x1(0) = 0, x2(0) = x2
0, . . . , x

N−1(0) = xN−1
0 , xN(0) = L} (34)

and by the initial velocities

{ẋ1(0) = 0, ẋ2(0) = ẋ2
0, . . . , ẋ

N−1(0) = ẋN−1
0 , ẋN (0) = 0} (35)

of all atoms.
From a macroscopic viewpoint, however, such a detailed description is not possible.

Macroscopically we can only prescribe initial values for the macroscopic variables, namely
ρ(0, x), v(0, x) andu(0, x). The relations between the microscopic and the macroscopic
initial value problem will be discussed in detail in sections 8.1, 9.2 and 9.5.

7.2. Conservation laws for the one-dimensional atomic chain

The general results regarding the conservation laws will now be reduced to the one-dimensional
atomic chain. We start from the general results (23) and (24) and specialize to one space
dimension. Hereafter we incorporate the restriction to nearest neighbour interaction to the
microscopic representations (23), (27) and (28) and end up with the following result.

(i) The conservation laws for mass, momentum and energy in one space dimension are

∂ρ

∂t
+
∂ρv

∂x
= 0 (36a)

∂ρv

∂t
+
∂

∂x
(ρv2 + p) = 0 (36b)

∂ρ( 1
2v

2 + u)

∂t
+
∂

∂x

(
ρ

(
1

2
v2 + u +

p

ρ

)
v + q

)
= 0. (36c)

(ii) For nearest neighbour interaction the microscopic representations are given by

ρ(t, x) =
∫ ∞

0

N∑
α=1

χα(ϑ, t, x)dϑ (37a)
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ρv(t,x) =
∫ ∞

0

N∑
α=1

ẋα(ϑ)χα(ϑ, t,x) dϑ (37b)

ρu(t,x) =
∫ ∞

0

N∑
α=1

( 1
2C

α(ϑ, t,x)2 + ϕ(rα(ϑ)))χα(ϑ, t,x) dϑ (37c)

for the basic variables, and by

p(t, x) =
∫ ∞

0

N∑
α=1

(
Cα(ϑ, t, x)2χα(ϑ, t,x)

−ϕ′(rα(ϑ))rα(ϑ)
∫ 1

0
χ(ϑ − t, xα(ϑ)− x +µrα(ϑ)) dµ

)
dϑ (38a)

q(t, x) =
∫ ∞

0

N∑
α=1

(
( 1

2C
α(ϑ, t, x)2 + ϕ(rα(ϑ)))C

α(ϑ, t, x)χα(ϑ, t, x)

− 1
2ϕ
′(rα(ϑ))rα(ϑ)Cα(ϑ, t, x)

×
∫ 1

0
χ(ϑ − t, xα(ϑ)− x +µrα(ϑ)) dµ

)
dϑ (38b)

for the pressure and the heat flux.

7.3. Macroscopic versus microscopic scaling of time and space

All microscopic calculations use space and time units as follows. The microscopic space unit
is chosen so thatϕ′(1) = 0 and the microscopic time unit is chosen so thatϕ′′(1) = 1.

In these units the total lengthL of the chain is thus proportional to the particle numberN ,
and due toϕ′′(1) = 1 the duration of the microscopic process under consideration,tF , must
also be a large number.

In order to avoid these large numbers in the representations of the macroscopic fields,
where many particles are involved, we use macroscopic time and space units and introduce a
positive scaling factor according to

tF = λt̃F L = λL̃. (39)

In macroscopic units the total length of the chain and the duration of the process are denoted
L̃ andt̃F , respectively. For convenience we choose in the numerical examplest̃F = 1.

This scaling corresponds to a coordinate transformation. Lett and x denote the
microscopic time and space coordinates andt̃ and x̃ the corresponding macroscopic
coordinates. Then we write

t̃ = 1

λ
t x̃ = 1

λ
x. (40)

Later, we shall suppress the tilde symbol above the macroscopic quantities. Regarding the
visualization the advantage of this convention of the results is obvious. In addition there is a
fundamental reason for this type of scaling, which in fact relies on the following observation.

Later, we shall consider various macroscopic Riemann initial value problems with a single
jump at, say,x = 0. These will be subsequently solved on the microscale for an increasing
numberN of particles. The given kind of scaling then leads to convergence to the macroscopic
fields in the limitN →∞, i.e. the macroscopic fields become independent ofN for sufficiently
largeN . In addition, the macroscopic fields turn out to be invariant with respect to the scaling
transformation (40):

uA(t, x) = uA(λt, λx). (41)
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We conclude that the macroscopic fields depend only on the ratiox
t
.

In section 10.5 we shall discuss the consequences of this important observation.
Note that time and space are scaled here with the same factorλ. This implies that

microscopic wave speeds do not depend on the particle numberN . Actually, this restricts
us to consider only wave phenomena but not diffusion in the macroscopic limitN → ∞.
Diffusion phenomena would require different time and space scalings.

8. The cold closure

8.1. Macroscopic initial data and preparation of the atomic chain

In the first example we study the following macroscopic initial value problem. We describe the
macrostate of a chain withN particles and with fixed lengthL by only two variables, namely
the mass densityρ(t, x) and the velocityv(t, x). The initial data are

ρ(0, x) =
{
ρl for x 6 L

2

ρr for x > L
2

v(0, x) =
{
vl for x 6 L

2

vr for x > L
2 .

(42)

Obviously these data are not sufficient to solve an initial value problem for theN−2 equations
of motion (33). Thus, there arises the question how to prepare the initial data of the atomic
chain.

LetNl andNr be the number of atoms which are initially left and right ofL/2, respectively.
We may calculate these quantities for givenN , ρl andρr according to the simple equations

L = 2
N − 1

ρl + ρr
(43a)

Nl +Nr = N − 1 (43b)
Nl

ρl
+
Nr

ρr
= L. (43c)

Equation, (43a), represents the length of the chain by(N − 1) intervals× the mean length
2/(ρl + ρr) of an interval. (43b) decomposes the number of intervals, and (43c) decomposes
the lengthL into its left and right part, whereL2 = Nl

ρl
= Nr

ρr
.

Assumption. The initial data for the atomic chain are given as follows:

xα0 =


1

ρl
(α − 1) for α = 1, 2, . . . , Nl

1

ρl
Nl +

1

ρr
(α −Nl − 1) for α = Nl + 1, . . . , N

ẋα0 =
{
vl for α = 1, 2, . . . , Nl
vr for α = Nl + 1, . . . , N .

(44)

We have thus assumed that the atoms have initially constant distances on the left and right
parts of the chain. In addition, they have constant velocities on each side. This corresponds to
zero temperature of the chain at timet = 0.

8.2. Calculation of the macroscopic fields by solving Newton’s equations

We now solve theN − 2 equations of motion (33) withN = 35 000 and use the obtained
data to calculate the macroscopic fields mass densityρ(t, x) and velocityv(t, x) according to
the microscopic representations (37a), (37b). Figure 1 depicts the space–time diagram of the
mass density for 06 t 6 1 and 06 x 6 4 with the scaling factorλ = 7413.
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Figure 1. Space–time diagram of the mass density
according to Newton’s equations.

The initial data areρl = 1.36, ρr = 1.00, vl = 0.53, vr = 0.00. These data result
from the evaluation of macroscopic Rankine–Hugoniot conditions which will be discussed in
section 8.5.

We observe that the initial discontinuity atx = 2 initiates a propagating shock-like
structure right up to the right boundary, where a reflection took place.

A more detailed description of the temporal development of this shock-like structure will
be given in section 8.4.

The rarefaction wave that enters the diagram from below will not interest us here. It results
from the interaction of the chain with the lower boundary.

8.3. Cold closure and field equations

In the last section we have calculated the fields of mass density and velocity for a macroscopic
initial value problem from the solution of theN − 2 microscopic equations of motion. In this
section we are interested in the same initial value problem, but we use now a macroscopic
system of two field equations for the mass density and for the velocity.

This system relies on the two conservation laws (36a), (36b). If � is any convex set in
space–time with piecewise smooth, positive oriented boundary∂�, then the conservation laws
for mass and momentum may be written in integral form:∮

∂�

(ρ dx − ρv dt) = 0 (45a)∮
∂�

(ρv dx − (ρv2 + p) dt) = 0 (45b)

and must be supplemented by a constitutive law that relates the pressure in (45b) to the variables.
We obtain this law if we supplement the microscopic equations of motion by an assumption
regarding the distribution of distancesrα and velocitiesẋα of microscopic particles of the
chain.

Assumption. Within the support of the window function at the space–time point(t, x) we
calculate the pressure from the microscopic representation (38) by setting

rα = 1

ρ(t, x)
and ẋα = v(t, x) for xα ∈ supp(χ(t, x)). (46)
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We call assumption (46) thecold closure, because thermal vibrations of the atoms are
completely ignored here.

Note that we are able to judge thecold closureby solving the microscopic equations of
motion. Later, we will do this for special cases.

The evaluation of (38a) for thecold closureassumption implies

p = −ϕ′
(

1

ρ

)
. (47)

If we replace the pressurep in (45) by−ϕ′( 1
ρ
), we obtain the weak form of a closed macroscopic

system, which leads in regular points to the differential form

∂ρ

∂t
+
∂ρv

∂x
= 0

∂ρv

∂t
+
∂

∂x

(
ρv2 − ϕ′

(
1

ρ

))
= 0 (48)

and across a shock front to the Rankine–Hugoniot jump conditions

−VS [[ρ]] + [[ ρv]] = 0 − VS [[ρv]] +

[[
ρv2 − ϕ′

(
1

ρ

)]]
= 0. (49)

In equation (49) [[a]] = ar − al denotes the jump of any fielda = a(x), andVS is the shock
velocity.

Note that the fields in (36a), (36b), which depend on the window function and the
microtrajectoriesxα(t), are continuous differentiable. However, after having replaced the
exact microscopic representation of the pressure by the constitutive law (47), the resulting
field equations may have regular as well as discontinuous solutions, and both are described
by (45).

In order to obtain the condition for hyperbolicity and the characteristic speeds of
system (48), we write it in the form

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0

∂v

∂t
+

1

ρ3
ϕ′′
(

1

ρ

)
∂ρ

∂x
+ v

∂v

∂x
= 0. (50)

There immediately results the characteristic speeds

λ1,2 = v ± 1

ρ

√
ϕ′′
(

1

ρ

)
(51)

and the condition for hyperbolicity isϕ′′( 1
ρ
) > 0, i.e.ρ >

√
3
5 for the functionϕ given in (3).

Note that this function satisfiesϕ′′(1) = 1, a condition which leads forρ = 1 andv = 0 to the
characteristic speedsλ1,2 = ±1.

8.4. Properties of the field equations

The system (48) and (49) represents a closed system of field equations for weak solutions of
the initial value problem above. This system is obviously of hyperbolic type in the region
ϕ′′ > 0.

Next we study the role of the conservation law (36c) of the energy. In particular, we have
to answer the important question, whether thecold closureeventually contradicts the energy
conservation, because, due to (46), the energy densityρe and the energy fluxQ become also
functions ofρ andv, so that the conservation law (36c) yields a third equation for the two
unknown fieldsρ(t, x) andv(t, x), namely

∂ρê(ρ, ρv)

∂t
+
∂Q̂(ρ, ρv)

∂x
= 0 (52a)
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with

ê(ρ, ρv) =
(
v2

2
+ ϕ

(
1

ρ

))
Q̂(ρ, ρv) =

(
ρê(ρ, ρv)− ϕ′

(
1

ρ

))
v. (52b)

This is by no means a contradiction, because there is the following proposition.

Proposition. (i) There exist so-called Lagrange multipiers3ρ and3ρv so that the conservation
law of the energy can be written as a linear combination of the two other conservation laws:

∂ê(ρ, ρv)

∂t
+
∂Q̂(ρ, ρv)

∂x
= 3ρ

(
∂ρ

∂t
+
∂ρv

∂x

)
+3ρv

(
∂ρv

∂t
+
∂

∂x

(
ρv2 − ϕ′

(
1

ρ

)))
.

(53)

In regular points the right-hand side of (53) vanishes and thus any solution of (48), (49)
satisfies, in addition, the energy equation (52).

(ii) If ϕ′′( 1
ρ
) > 0 holds, the matrix of second derivatives of the functionρê(ρ, ρv) is

positive definite.
(iii) Consequently, system (48) is of symmetric hyperbolic type and has the energy as a

convex extension.

Proof. We start from (52b) and from the left-hand side of equation (53). After some
rearrangements we obtain (53) with the identifications

3ρ = −1

2
v2 + ϕ

(
1

ρ

)
− 1

ρ
ϕ′
(

1

ρ

)
3ρv = v. (54)

Next we form the matrix of second derivatives of the functionê(ρ, ρv):( 1
ρ3 (ρ

2v2 + ϕ′′( 1
ρ
)) − 1

ρ
v

− 1
ρ
v 1

ρ

)
(55)

and this is positive definite ifϕ′′( 1
ρ
) > 0.

The third part of the proposition relies on

3ρ = ∂ρê(ρ, ρv)

∂ρ
3ρv = ∂ρê(ρ, ρv)

∂ρv
(56)

and these relations follow immediately from (53). The convexity ofê(ρ, ρv) guarantees that
we may change the variables fromuA = (ρ, ρv) to u′A = (3ρ,3ρv), A = 0, 1. Let

e′ = ρe −3ρρ −3ρvρv Q′ = Q−3ρρv −3ρv

(
ρv2 − ϕ′

(
1

ρ

))
(57)

which implies

ρ = − ∂e′

∂3ρ
ρv = − ∂e′

∂3ρv
ρv = − ∂Q

′

∂3ρ
ρv2 − ϕ′

(
1

ρ

)
= − ∂Q′

∂3ρv
. (58)

From these equations we conclude that the system of field equations (48) can be written as
1∑

B=0

(
∂2e′

∂u′A∂u
′
B

∂u′B
∂t

+
∂2Q′

∂u′A∂u
′
B

∂u′B
∂x

)
= 0. (59)

The convexity of̂e(ρ, ρv) implies the convexity of its Legendre transforme′(3ρ,3ρv), which
proves that (59) is the symmetric hyperbolic form of the original system (48). The reader is
referred to the pioneering work by Friedrichs and Lax [7]. �

This last result motivates the introduction of the entropy even for thecold closurewhich
is properly a purely mechanical case. We choose the entropy densityρh = −ρe, which is
in agreement with modern thermodynamics, where the negative of the convex extension of
the system of field equations is always called entropy. For details we refer the reader to the
interesting study of this subject [8] by Boillat and Ruggeri.
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8.5. Rankine–Hugoniot conditions and shock selection criterion

The purpose of this section is the evaluation of the Rankine–Hugoniot conditions for the
Riemannian initial data (42). Furthermore, we shall establish the entropy balance across the
initial discontinuity as a shock selection criterion.

We fix the fields right from the shock to beρr = 1 andvr = 0. The fields on the left-hand
side are denoted asρl = ρ andvl = v, and we choose the densityρ as the shock parameter.
Then the Rankine–Hugoniot conditions (49) yield

V 2
S = −

ϕ′( 1
ρ
)

(1− 1
ρ
)
> 0 for ρ > 0 and v =

(
1− 1

ρ

)
VS. (60)

In order to single out the unphysical solutions of (60) we consider the entropy condition. It
requires a positive entropy productionσS across a discontinuity. From the observation that
here the entropy density is equal to the negative of the energy density we conclude from the
known energy jump that the entropy production is given by

σS = VS
[[
ρ

(
v2

2
+ ϕ

(
1

ρ

))]]
−
[[(

ρê(ρ, ρv)− ϕ′
(

1

ρ

))
v

]]
> 0. (61)

It can be shown from (61) that only compressive shocks, i.e.ρ > 1, are allowed.
In the next section we compare the prediction of a single shock due to (60), (61) with the

solution of the Riemann problem due to Newton’s equations.

8.6. Comparison of the results

A solution of (60), that satisfies the entropy condition (61), is given by

ρl = 1.36 ρr = 1.00 vl = 0.53 vr = 0.0 and VS = 2.0. (62)

This predicts a single shock, starting att = 0, x = L
2 , which should properly end up in the

upper right corner of figure 1. Recall that figure 1 in section 8.2, which was solved from the
microscopic equations of motion, relies on the same initial data forρ andv.

We conclude that thecold closureexhibits some shortcomings.
(i) The microscopic equations of motion predicts for the Riemann problem no single shock

solution, and furthermore, the shock-like structure which results from Newton’s equations
reaches the boundary earlier, as predicted byVS = 2.

(ii) The macroscopiccold closureequations predicts energy production across the shock,
which is in contrast to the microscopic equations of motion.

The reason for these shortcomings might be the neglect of the development of thermal
motion in thecold closureassumption.

9. The thermal closure

9.1. Thermal motion, temperature and distribution function

In the last section we identified one reason for failure of the applicability of thecold closure
to the considered initial value problem. We ignored the development of the stochastic thermal
motion. This will be taken into account now.

We start with the introduction of the macroscopic temperature fieldT (t, x) and define this
quantity by the kinetic energy of the excess motion of the particles:

ρ

2
T (t, x) =

∫ ∞
0

N∑
α=1

1
2C

α(ϑ, t,x)2χα(ϑ, t,x) dϑ. (63)
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Note that thecold closureassumesCα(ϑ, t,x) = ẋα(ϑ) − v(t, x) ≡ 0, and thus forbids
the generation of thermal motion. This is obviously an artificial assumption and explains the
difference of the microscopic result to the Rankine–Hugoniot prediction of the last section.
From now on we include the temperature in the list of macroscopic variables.

We definethermal motionby the three following assumptions.

Assumptions.

(i) The distribution of distances and velocities are completely uncorrelated, so that their
common distribution has the probability densityG: R+

0 × R→ R+
0 whereG(r, c) > 0 is

the product of two probability densitiesF : R+
0 → R+

0 andf : R→ R+
0:

G(r, c) = F(r)f (c)
∫ ∞

0
F(r) dr = 1

∫ ∞
−∞

f (c) dc = 1. (64)

(ii) The velocitiesc are assumed to be distributed by the Gaussian density

fG(β, c) =
√
β

2π
exp

(
−β c

2

2

)
. (65)

Later, we will see by solving Newton’s equations in equilibrium that for a fixed temperature
T , the functionf is realized byf (c) = fG(β, c), whereβ is the inverse temperature1

T
.

This notation is often used in thermodynamics.
(iii) The distancesr are assumed to be distributed by the function

F̂ (α, β, r) = 1

z(α, β)
exp(−αr − βϕ(r))

with z(α, β) =
∫ ∞

0
exp(−αr − βϕ(r)) dr.

(66)

The quantityα is determined by the mean distance of two neighbouring particles

1

ρ
= r̄(α, β) =

∫ ∞
0
rF̂ (α, β, r)dr. (67)

Later on we will see by solving Newton’s equations in equilibrium that for fixed density
ρ and temperatureT the functionF̂ is realized byF(r) = F̂ (α, 1

T
, r).

In addition to (67) we also define the mean potential energy, which will be used next:

ϕ̄(α, β) =
∫ ∞

0
ϕ(r)F̂ (α, β, r)dr. (68)

Assumptions (i)–(iii) are in accordance with the maximum entropy principle and hold when
the atomic chain is in thermal equilibrium. Regarding the maximum entropy principle we refer
the reader to the detailed discussions by Dreyer [9] and Boillat and Ruggeri [10].

9.2. Preparation of the atomic chain in thermal equilibrium

In thermal equilibrium the macrostate of the atomic chain is completely determined by three
constant values of mass densityρ > 0, velocity v and temperatureT . Now we prepare
microscopic initial data for an atomic chain, consisting ofN particles, for given values ofρ,
v andT . The length of the chain isL = (N − 1)/ρ.

The preparation procedure is divided into three steps.
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(i) We start with a configuration where all positions of the atoms are distributed
equidistantly according to the given densityρ and where the mean velocityv of the particles
is zero:

y
γ

0 = (γ − 1)/ρ ẏ
γ

0 = Cγ γ = 1, 2, . . . , N. (69)

Here the stochastic excess velocitiesCγ are Gaussian distributed for 1< γ < N with mean
velocity 〈Cγ 〉 = 0 and mean squareT ′ = 〈(Cγ )2〉. T ′ is determined by the obvious equation
that uses the mean potential energy given in (68):

1

2
T ′ + ϕ

(
1

ρ

)
= 1

2
T + ϕ̄

(
α,

1

T

)
. (70)

The parameterα has to be determined here by (67) for givenρ andT . The atoms aty0
0 = 0

andyN0 = 0 are constrained to zero velocities.
(ii) In a second step we solve the microscopic equations of motion for these initial data.

Condition (70) is chosen so that after some timet0 > 0 the positions of the atoms are
additionally distributed according to the thermal distribution of distances (66). There result
new positionsyγ (t0) and velocitieṡyγ (t0), γ = 1, . . . , N .

(iii) In a third step we define the desired initial data by

x
γ

0 = yγ (t0) ẋ
γ

0 = ẏγ (t0) + v. (71)

9.3. Calculation of distribution functions by solving Newton’s equations and comparison
with the analytical formulae

By solving Newton’s equations for the global dataα = 17.12 andβ = 0.94, so that
ρ(α, β) = 2.0 andT = 1.06, we may determine the distributions of velocities and distances.
These are depicted in figure 2 by the dots. The solid curves in figure 2 represent the
analytical functions (65) and (66), respectively. We observe a perfect agreement between
the empirical microscopic distributions and the analytical functions. We consider a total chain
with N = 10 000 particles,λ = 5000, 06 x 6 1, 06 t 6 1.

9.4. Thermal closure and field equations

The agreement that we have found in the last section serves as a motivation to replace thecold
closureby thethermal closure. We shall now assume that the distribution functions of global
equilibrium are also realized locally at any space–time point. Thus, we describe the macrostate
of the atomic chain by the three variablesρ, v andT .

The system of field equations relies on the three conservation laws (36), which we write
in the one-dimensional integral form:∮

∂�

(ρ dx − ρv dt) = 0∮
∂�

(ρv dx − (ρv2 + p) dt) = 0∮
∂�

((ρ
2
v2 + ρu

)
dx −

(ρ
2
v2 + ρu + p

)
v dt

)
= 0.

(72)

Here� is a convex set in space–time with piecewise smooth, positive oriented boundary∂�.
These equations must be supplemented by constitutive laws that relate the pressure, the

internal energy and the heat flux to the variables. We obtain this law if we supplement the
microscopic equations of motion by an assumption regarding the distribution of distancesrα
and velocitiesẋα of microscopic particles of the chain. Here we assume that the distances
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(a)

(b)

Figure 2. Distribution of velocities (a) and distances (b), comparison of microscopic data and
analytical results.

and velocities are distributed according to the thermal motion which we have introduced just
before. It follows that

1

ρ
=
∫ ∞

0
rF̂ (α, β, r)dr = r̂(α, β) (73a)

T =
∫ ∞
−∞

c2fG(β, c)dc = 1

β
(73b)

p = ρT − ρ
∫ ∞

0
rϕ′(r)F̂ (α, β, r)dr = α

β
(73c)

u = 1
2T +

∫ ∞
0
ϕ(r)F̂ (α, β, r)dr = 1

2T + ϕ̄(α, β) = û(α, β) (73d)

q = 0. (73e)

Equations (73) define thethermal closurewith fG(β, c) andF̂ (α, β, r) given by (65) and (66),
respectively. In each line the first equality results from the evaluation of the microscopic
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representations (37) and (38). The nonconvective part of the energy fluxq is zero because
the distribution functions used assume local equilibrium. The second equality in each line
introduces some useful abbreviations that will be used in the following. Furthermore, the
pressure integral was subjected to a partial integration. The remaining integrals must be
evaluated numerically.

We have thus established a closed system of field equations for the variablesρ, v andT ,
or alternatively for the variablesα, β andv. The system consists of the conservation laws (72)
and of the constitutive equations (73).

After having closed the system of conservation laws, the integral form (72) takes care
of discontinuous shock solutions. This is in analogy to thecold closure. The system of
differential equations (36) results from its weak form (72), that additionally yields the shock
conditions: let(ρ, v, T ) and(ρ ′, v′, T ′) be the constant states left and right, respectively, to
a shock front with velocityVS . By applying a Galilean transformation it is always possible
to assumev′ = 0 without loss of generality. Then we obtain, after some rearrangement, the
following Rankine–Hugoniot shock conditions:

VS = v

1− ρ ′
ρ

v2 =
(

1

ρ ′
− 1

ρ

)
(p − p′)

0= 2(u′ − u) +

(
1

ρ ′
− 1

ρ

)
(p + p′).

(74)

We proceed to establish the properties of the field equations and to find a shock selection
criterion. To this end we shall first prove that it is possible to define a specific entropyh(ρ, T ),
which satisfies the so-called Gibbs relation betweenu(ρ, T ), p(ρ, T ) andT > 0:

dh = 1

T
du +

1

T
p d

(
1

ρ

)
. (75)

The Gibbs relation implies an integrability condition which guarantees that the right-hand side
of (75) is indeed an integrable differential form:

∂u

∂( 1
ρ
)
= T ∂p

∂T
− p. (76)

In order to check (75) we write the following relations for the mass density and the internal
energy, and use the functionz(α, β) = ∫∞0 exp(−αr−βϕ(r)) dr which was introduced in (66):

1

ρ
= −

∂ ln( z(α,β)√
β
)

∂α
and u = −

∂ ln( z(α,β)√
β
)

∂β
. (77)

Consequently, withp = α/β we may form the following differential form, which depends on
α andβ;

β

(
du + p d

(
1

ρ

))
= d

(
βu +

α

ρ
+ ln

(
z(α, β)√

β

))
. (78)

This proves (75) and identifies the specific entropy:

h = βu +
α

ρ
+ ln

(
z(α, β)√

β

)
. (79)

Note that it is possible to prove the integrability condition (76) directly from thethermal closure
assumption (73) without any knowledge about the entropy densityh in (79).
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Finally, we determine the condition which leads to a hyperbolic system that can be brought
additionally into the symmetric hyperbolic form.

This can be achieved by replacing the specific internal energy densityu by the energy
densitye = ρ(u + v2/2) and after some simple rearrangements we obtain:

d(ρh) = 3ρ dρ +3ρv d(ρv) +3e de with

3ρ = −
(
u− T h +

p

ρ
− v

2

2

)
3ρv = − v

T
3e = 1

T
.

(80)

Hereafter we prove the identity

d(ρhv) = 3ρ d(ρv) +3ρv d(ρv2 + p) +3e d(ρ(u + v2/2)v + pv). (81)

Finally we establish the conditions for convexity of−ρh(ρ, ρv, ρe), i.e. with uA =
(ρ, ρv, ρe). Convexity means that the matrix∂

2(ρh)

∂uA∂uB
is negative definite. Let� ⊂ R+

0 × R+
0

be any convex region in the(α, β) state space. If the Legendre transformh′(α, β) =
ln(z(α, β)/

√
β) of the entropy density is concave in�, then to each(α, β) ∈ � there

corresponds a unique pair(ρ, T ) that satisfiesβ = 1
T

and the equation (67), and guarantees

additionally the negative definiteness of the matrix∂
2(ρh)

∂uA∂uB
.

These results have the important consequence that

∂ρh

∂t
+
∂ρhv

∂x
= 3ρ

(
∂ρ

∂t
+
∂ρv

∂x

)
+3ρv

(
∂ρv

∂t
+
∂

∂x
(ρv2 + p)

)
+3e

(
∂e

∂t
+
∂

∂x
(ρ(u + v2/2)v + pv)

)
(82)

holds, so that the field equations have a convex extension and can be brought into the symmetric
hyperbolic form.

9.5. Riemannian initial data and preparation of the atomic chain

In the next example we study the following macroscopic initial value problem. We describe
the macrostate of the chain withN particles and with fixed lengthL by three variables, namely
the mass densityρ(t, x), the velocityv(t, x) and the temperaureT (t, x). The initial data are

ρ(0, x) =
{
ρl

ρr
v(0, x) =

{
vl

vr
T (0, x) =

{
Tl for x 6 L

2

Tr for x > L
2 .

(83)

These data are also not sufficient to solve an initial value problem for theN − 2 equations
of motion (33). Thus, there again arises the question of how to prepare the initial data of the
atomic chain.

At first we consider the atomic chain to be composed of two half-chains of lengthL/2
with Nl andNr particles, respectively, whereNl ,Nr andL are given by (43). Each half-chain
is assumed to be in thermal equilibrium at its individual densitiesρl , ρr and at its individual
temperaturesTl , Tr . The independent preparation of thermal equilibrium for each half-chain
was already described in detail in section 9.2.

Finally we bring both half-chains in contact.

9.6. Failure of the thermal closure

We choose the initial dataρl = 1.5,ρr = 1.0,vl = vr = 0,Tl = Tr = 0, i.e. we start with two
cold chains, and solve Newton’s equations forN = 35 000 particles. We choose the scaling
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(a) (b)

Figure 3. Density (a) and temperature (b) according to Newton’s equation for Riemannian initial
data.

Figure 4. Distribution of distances according to Newton’s equations at timet = 1.0 and at position
x = 6.1.

factorλ = 2800 and calculate from the obtained data at timet = 1.0 the fields of density and
temperature. The results are depicted in figure 3.

The density exhibits the development of a shock-like structure and of two weak
discontinuities. Furthermore, we observe that at the position where the density forms the
shock-like structure, the temperature apparently develops a shock which is accompanied by a
tail. In the region of the weak discontinuities there is no development of the temperature, i.e. the
atomic chain remains cold and is thus completely determined by thecold closurein that region.

Next we ask whether the chain has established local thermal equilibrium, at least in the
vicinity of the shock. We answer this question by using the data that we have obtained from
the solution of Newton’s equations, and we calculate the distribution of distances. Figure 4
shows the surprising result.

The distribution which is depicted in figure 4 results at timet = 1 and at positionx = 6.1.
Properly, we should expect a graph which has qualitatively the shape of the equilibrium
distribution from figure 2. However, there results a distribution with a complete different
behaviour.

We conclude that thethermal closurefails to describe the macroscopic behaviour of the
atomic chain. Next we shall explain this fact and the indicationoscillator distributionin detail.
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10. The oscillator closure

10.1. Oscillator motion, temperature and distribution function

A careful study of the microscopic motion of the atomic chain has revealed that thethermal
closurecannot appropriately predict the development of the Riemannian initial data of the last
example. Recall thatthermal motion, as defined in section 9.1, is indicated by a stochastic
change of postions and velocities, so that both quantities are uncorrelated.

In the current case a detailed study of the microscopic motion shows that the thermal
motion of theN atoms is generated byN/2 oscillators of the following type.

In general the atomic chain consists at any timet of N − 1 different distances between
the particles, i.e. for fixed particle numberα we have

{. . . , rα−3(t), rα−2(t), rα−1(t), rα(t), rα+1(t), rα+2(t), rα+3(t), . . .}. (84)

However, at the considered temperatures only two different distancesr(t) and s(t) have
appeared alternatively, so that the microscopic motion is of the kind

{. . . , s(t), r(t), s(t), r(t), s(t), r(t), s(t), . . .}. (85)

Furthermore,r(t) ands(t) are restricted by the condition

r(t) + s(t) = 2

ρ
. (86)

We conclude that there is only one representative equation of motion for the oscillator motion,
namely

r̈(t) = 2

(
ϕ′
(

2

ρ
− r(t)

)
− ϕ′(r(t))

)
. (87)

Instead ofr we sometimes use for convenience the quantityx = (1/ρ− r)/2 which measures
the displacement from the mean distance. Note that the mass density is a constant on the
atomic scale, i.e. within the support of the window function. Thus we can write

ẍ(t) = ϕ′
(

1

ρ
− 2x(t)

)
− ϕ′

(
1

ρ
+ 2x(t)

)
. (88)

Without loss of generality we solve this equation for the initial displacementx(0) = 0 and for
a given positive initial velocitẏx(0).

Before we proceed, we note that equations (86)–(88) imply that the velocities of the
two particles which constitute the oscillator, sayẋα+1(t) and ẋα(t), are restricted according
to ẋα+1(t) = −ẋα(t). This fact will become important when we evaluate the microscopic
representations of the macroscopic fields.

The first integral of (88) readṡx(t) = ±
√
e0 − ϕ( 1

ρ
− 2x(t))− ϕ( 1

ρ
+ 2x(t)), wheree0

is the integration constant. The oscillator moves between its minimal and maximal distances
r− andr+, which are restricted by

r− + r+ = 2

ρ
. (89)

Finally, we choose the integration constante0 = ϕ(r−) + ϕ(r+). The representation oḟx(t)
that we shall use further on is now given by

ẋ(t) = ±
√
ϕ(r+) + ϕ(r−)− ϕ(r(t))− ϕ

(
2

ρ
− r(t)

)
. (90)
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Due to (90) the mean value ofẋ(t) in time is zero, and we shall define ther-dependent positive
part of the excess velocity:

C(r−, r+, r) =
√
ϕ(r+) + ϕ(r−)− ϕ(r)− ϕ(r− + r+ − r). (91)

It is important to recognize that the only microscopic variable which is left is the distancer.
Thus we can now construct a distribution function that only accounts for the distribution of
possible values ofr.

To this end we define the duration of a half-period of the oscillator motion whereẋ(t) > 0:

t∗(r−, r+) =
∫ r+

r−

dr√
ϕ(r+) + ϕ(r−)− ϕ(r)− ϕ(r− + r+ − r)

> 0. (92)

The integral exists in the convex region ofϕ, because there the integrand approaches
1/
√
(r − r−)(ϕ′(r+)− ϕ′(r−)) and 1/

√
(r+ − r)(ϕ′(r+)− ϕ′(r−)), respectively, in the limits

r → r− andr → r+.
Next we define a functionw(r−, r+, r) on the interval(r−, r+) according to

w(r−, r+, r) = 1

t∗(r−, r+)
√
ϕ(r+) + ϕ(r−)− ϕ(r)− ϕ(r− + r+ − r)

with
∫ r+

r−
w(r−, r+, r)dr = 1.

(93)

Note thatw(r−, r+, r)dr gives the probabilty of finding at any timet the distancer within the
infinitesimal interval [r, r + dr]. From (93) there results the important symmetry condition

w(r−, r+, r) = w(r−, r+, r− + r+ − r). (94)

The distribution functionw(r−, r+, r) will be used in section 10.3 to establish theoscillator
closure. However, already here we shall introduce the temperature of the oscillator motion as
follows:

T = 1

t∗(r−, r+)

∫ t∗(r−,r+)

0
ẋ(t)2 dt = 1

t∗(r−, r+)

∫ r+

r−
C(r−, r+, r)dr. (95)

This definition is analogous to the corresponding definition (73b) for the thermal closure.

10.2. Realization of the oscillator distribution by Newton’s equations

In section 9.6 we considered Riemannian initial data with zero temperature which lead for later
times in some region to a temperature field. The distribution function in that region is called
oscillator distribution and is displayed in figure 4.

The statistical parameters to that curve areρ(t = 1, x = 6.1) = 1.25 andT (t = 1,
x = 6.1) = 0.033. Now we may use these data in order to calculater− = 0.70 andr+ = 0.90
from (89) and (95). The solid curve in figure 5 represents the analytical expression (93),
and for a comparison with the corresponding distribution that was calculated from Newton’s
equations, we have put the data from figure 4 once more as dots.

We find complete agreement between both procedures.
Consequently, we conclude that a given pair (ρ, T ) does not constitute a unique

equilibrium, because we know from section 9.2 that a pair (ρ, T ) may be realized by the
classicalthermal motion, while here we have learned that the same pair can also be realized
by the oscillator motion.
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Figure 5. Distribution of distances, comparison of microscopic data and analytical results.

10.3. Oscillator closure and field equations

We consider again the macroscopic system of the three conservation laws∮
∂�

(ρ dx − ρv dt) = 0∮
∂�

(ρv dx − (ρv2 + p) dt) = 0∮
∂�

((ρ
2
v2 + ρu

)
dx −

(ρ
2
v2 + ρu + p

)
v dt

)
= 0

(96)

which must be supplemented by constitutive laws that relate the pressure, the internal energy
and the heat flux to the basic variablesρ andT . Note that the constitutive laws cannot depend
on the other basic variablev.

We obtain the constitutive laws if we supplement the microscopic equations of motion
by an assumption regarding the distribution of distancesrα and velocitieṡxα of microscopic
particles of the chain. Here we assume that the distances and velocities are distributed according
to theoscillator motionwhich we have introduced just before.

In the list of variables we replaceρ andT by r− andr+, because these latter quantities
appear explicitly in the distribution functionw(r−, r+, r). Consequently we write down the
mass density, the pressure, the internal energy, the temperature and the heat flux as functions
of r− andr+.

This is achieved by the closure ansatz:

1

ρ
=
∫ r+

r−
rw(r−, r+, r)dr = 1

2(r− + r+) (97a)

T =
∫ r+

r−
C2w(r−, r+, r)dr = 1

t∗

∫ r+

r−

√
ϕ(r+) + ϕ(r−)− ϕ(r)− ϕ(r− + r+ − r) dr (97b)

p = ρ
∫ r+

r−
(C2 − rϕ′(r))w(r−, r+, r)dr
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= − 1

t∗

∫ r+

r−

ϕ′(r) dr√
ϕ(r+) + ϕ(r−)− ϕ(r)− ϕ(r− + r+ − r)

(97c)

u =
∫ r+

r−
( 1

2C
2 + ϕ(r))w(r−, r+, r)dr = 1

2(ϕ(r−) + ϕ(r+)) (97d)

q = 0. (97e)

The list (97) defines theoscillator closurewith t∗(r−, r+),w(r−, r+, r) andC(r−, r+, r) given
by (92), (93) and (91), respectively. In each line the first equality results from the evaluation
of the microscopic representations (37) and (38) with the oscillator distribution function. The
nonconvective part of the energy flux,q, is zero because the individual particle velocities of
an oscillator cancel each other. The second equality in each line results from some simple
manipulations of the integrals. The remaining integrals must be evaluated numerically.

We have thus established a closed system of field equations for the variablesρ, v andT or
alternatively for the variablesr−, r+ andv. The system consists of the conservation laws (96)
and of the constitutive equations (97). Using the closure conditions (97) we are able to derive
from (96) the differential form (36) of the conservation laws as well as the Rankine–Hugoniot
conditions (74), which are also valid here.

10.4. Properties of the field equations

Recall that theoscillator closureassumes randomly distributed distances between the particles
of the chain. However, in contrast to thethermal closure, their velocities are determined
from Newton’s law for given distances. Nevertheless, even in this case there holds the Gibbs
equation

T dh = du + p d

(
1

ρ

)
. (98)

This fact will be proved in the following, and an explicit expression for the specific entropyh

will be given. The subsequent reasoning that leads to the symmetric hyperbolic form of the
system (96) and (97) runs along the same lines as was carried out for thethermal closureand
will therefore be skipped.

Proposition. (i) In the convex regionϕ′′(r) > 0 there holds the integrability condition between
the functions densityρ(r−, r+), temperatureT (r−, r+), pressurep(r−, r+) and internal energy
u(r−, r+), which are defined in (97):

∂

∂r−

(
1

T

(
∂u

∂r+
+

1

2
p

))
= ∂

∂r+

(
1

T

(
∂u

∂r−
+

1

2
p

))
. (99)

(ii) The condition (99) implies the existence of the specific entropy functionh(r−, r+)
according to

∂h

∂r−
= 1

T

(
∂u

∂r−
+

1

2
p

)
∂h

∂r+
= 1

T

(
∂u

∂r+
+

1

2
p

)
(100)

which yields after integration

h(r−, r+) = ln

(∫ r+

r−

√
ϕ(r+) + ϕ(r−)− ϕ(r)− ϕ(r− + r+ − r) dr

)
. (101)

Proof. (99) is the integrabily condition for (98). By introducing the functionsp0(r−, r+) =
t∗(r−, r+)p(r−, r+) andT0(r−, r+) = t∗(r−, r+)T (r−, r+), and with (97d), we may write (99)
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in its equivalent form

∂p0

∂r+
− ∂p0

∂r−
= ϕ′(r+) ∂t∗

∂r−
− ϕ′(r−) ∂t∗

∂r+
+

1

T

(
(ϕ′(r−) + p)

∂T0

∂r+
− (ϕ′(r+) + p)

∂T0

∂r−

)
. (102)

Next we calculate the identities
∂T0

∂r−
= t∗

2
(ϕ′(r−) + p)

∂T0

∂r+
= t∗

2
(ϕ′(r+) + p) (103)

and introduce these in (102), which reduces to

∂

∂r+
(p0 + ϕ′(r−)t∗) = ∂

∂r−
(p0 + ϕ′(r+)t∗). (104)

If we again use the identities (103), we can write condition (104) in the form

∂2T0

∂r−∂r+
= ∂2T0

∂r+∂r−
. (105)

It remains to derive the (not obvious) existence and continuity of thet∗ andp0 derivatives.
Here we shall present their explicit form which may also serve to check condition (104) by
direct substitution:

∂t∗
∂r+
= +t∗
r+ − r− −

1

2

∫ r+

r−

ϕ′(r+)− ϕ′(r) r−r−r+−r− − ϕ′(r− + r+ − r) r+−rr+−r−
[ϕ(r−) + ϕ(r+)− ϕ(r)− ϕ(r− + r+ − r)] 3

2

dr (106a)

∂t∗
∂r−
= −t∗
r+ − r− −

1

2

∫ r+

r−

ϕ′(r−)− ϕ′(r) r+−rr+−r− − ϕ′(r− + r+ − r) r−r−r+−r−
[ϕ(r−) + ϕ(r+)− ϕ(r)− ϕ(r− + r+ − r)] 3

2

dr (106b)

∂p0

∂r+
= − t∗

r+ − r− · ϕ
′(r+)

+
1

2

∫ r+

r−

ϕ′(r+)[ϕ′(r) r+−rr+−r− + ϕ′(r− + r+ − r) r−r−r+−r− ] − ϕ′(r)ϕ′(r− + r+ − r)
[ϕ(r−) + ϕ(r+)− ϕ(r)− ϕ(r− + r+ − r)] 3

2

dr

∂p0

∂r−
= +

t∗
r+ − r− · ϕ

′(r−) (107)

+
1

2

∫ r+

r−

ϕ′(r−)[ϕ′(r)
r−r−
r+−r− + ϕ′(r− + r+ − r) r+−rr+−r− ] − ϕ′(r)ϕ′(r− + r+ − r)

[ϕ(r−) + ϕ(r+)− ϕ(r)− ϕ(r− + r+ − r)] 3
2

dr.

These integrals exist in the convex regionϕ′′(r) > 0, but they cannot be obtained by a simple
differentiation rule, because singularities with exponent− 3

2 appear atr = r− and atr = r+.
Here we have calculated the partial derivatives by its definitions. For example, (106b) may be
obtained as follows. We start with

∂t∗
∂r−
= lim

ε→0

1

ε
[t∗(r− + ε, r+)− t∗(r−, r+)] (108)

and substitute the integral representation fort∗(r−+ε, r+)with the lower integration limitr−+ε
and the upper integration limitr+ by the transformation

r → r− + (r+ − r−) r − r− − ε
r+ − r− − ε . (109)

Then in (108) both representations fort∗(r− + ε, r+) andt∗(r−, r+) have the same integration
limits r±, and we can combine them to a single integral in order to pass to the limitε → 0.
The other representations may be obtained in the same way. �
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Figure 6. Transition of the distributions of velocities for various positions within the temperature
pulse.

10.5. Transition from the thermal motion to the oscillator motion

Recall that in section 9.6 we considered Riemannian initial data with zero temperature. For
later times these data imply the development of a temperature field that was not constituted by
thermal motion but by oscillator motion.

Now we consider initial Riemannian data with nonzero temperature. In particular,
we prepare both half-chains so that they initially realize thermal motion with different
temperatures. The data areρl = 1.5, ρr = 1.0, vl = vr = 0, Tl = 0.01 andTr = 0.005.
The total chain consists ofN = 10 000 particles, and for the macroscopic representations we
choose the scaling factorλ = 800.

These data are used now to solve Newton’s equations, and to calculate at timet = 1.0
the temperature field as well as the distributions of the velocities and the distances at various
positions. We now discuss the surprising results which are depicted in figures 6 and 7.

The upper left graph in figures 6 and 7 shows the temperature field at timet = 1.0. The
shape of the field is almost the same as that we obtained in figure 3, where we started with zero
temperature in both half-chains. However, the microscopic motion behind the two temperature
fields is completely different. The microscopic motion that induces the temperature field
in figure 3 is pure oscillator motion. By contrast, the microscopic motion that induces the
temperature field in this section is neither pure oscillator motion nor pure thermal motion but
a mixing of both. This statement is borne out in figures 6 and 7. These depict at timet = 1.0
the distributions of velocities and distances, respectively, for five different positions along the
x coordinate.

We observe that the first and the last distribution functions, which are displayed in figures 6
and 7, represent the thermal motion which is due to the thermal preparation of both half-chains.
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Figure 7. Transition of the distributions of distances for various positions within the temperature
pulse.

The intermediate distribution functions exhibit some kind of transition between thermal and
oscillator motion. In particular, the distribution of distances at positionx = 6.8 is reminiscent
of the pure oscillator distribution in figure 5.

We conclude that in addition to the thermal and oscillator motion between the positions
from x = 5.5 up tox = 7.1 there appear new kinds of microscopic motions that were not
considered before. To all these different motions there correspond distribution functions, which
represent different kinds of local equilibria. We shall now illustrate the consequences of this
statement, and start the discussion with a definition.

Definition. An atomic chain at the macroscopic space–time point(t, x) is said to be in local
equilibrium, if its microscopic motion, which is described by a distribution function in the
close vicinity of(t, x), can also be established globally independent of space and time and is
globally described by the same distribution function. In addition, we require that arbitrary
small disturbances of the microscopic motion do not lead to a change of the distribution
function.

We now pose and answer two questions: Is this definition in accordance with conventional
definitions of local equilibrium? And secondly, do the distribution functions from figures 6
and 7 describe local equilbria?

Regarding the first question we point out that there is no unique definition of local
equilibrium in the literature.

Often local equilibrium is defined by vanishing heat flux and vanishing pressure deviator.
Sometimes this definition is replaced by the statement: A material at the macroscopic space–
time point(t, x) is said to be in local equilibrium, if the macrostate of the material at that point
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Figure 8. The scaling invariance of the microscopic Riemann solution.

is completely given by a distribution function of the microscopic motion which has only the
quantitiesρ, v andT as parameters.

Note that our definition of local equilibrium does not contain any reference to the quantities
ρ,v andT . In particular it is not assumed that the characterization of an equilibrium distribution
function is given by a finite set of variables.

Regarding the second question we have observed that according to our definition all the
distribution functions which are depicted in figures 6 and 7 describe local equilibria. This
relies on the observation, see section 7.3, that the local microscopic motion as well as the
macroscopic fields depend on time and space only via the ratiox/t , if N is sufficiently large
and if the jump is initially located atx = 0. This case will be considered now exclusively.

There is an interesting consequence of this observation which can be read off from figure 8,
which assumes without loss of generality the jump in the Riemannian initial data atx = 0.

We consider the infinite sequence of regions�1, �2, �3, . . . , of increasing size. If the
fieldsuA(x/t) do not change significantly in time and space within a small region, say�1,
then the same is true in a macroscopically large region�n, with largen.

We now describe how a chain must be prepared in order to establish globally the local
distributions at any point(t0, x0). Around this point we choose a region, say�1, sufficiently
small so that the microscopic motion within�1 does not change significantly.

Next we inflate�1 within the segment from figure 8 in order to end up with a large
region�n from where we use the global data for the global construction of the distributions
of velocities and distancies.

Recall that the microscopic motion in�n is the same as in�1.
Finally we discuss an interesting consequence. We calculate the heat flux field at time 1.0.

The result is shown in figure 9. It is important to recall that the heat flux is zero for the pure
thermal motion as well as for the pure oscillator motion. In contrast, those microscopic motions
that constitute the other local equilibria induce a nonzero macroscopic heat flux. However this
does not mean that the heat flux is proportional to the temperature gradient.

This can be immediately observed from a comparison of figure 9 with the corresponding
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Figure 9. Heat flux field at timet = 1.

temperature field from figures 6 and 7. Moreover, the time and space dependence of the heat
flux is also obviously given by the ratiox/t , and for that reason, the heat flux cannot be
proportional to the temperature gradient.

Thus, in the considered examples there is no accordance between our definition and the
conventional definition of local equilibrium.

The conventional definition of local equilibrium assumes implicitly that the microscopic
motion is uniquely determined by a finite number of macroscopic parameters like density and
temperature.

This is not true in our examples, even if we only consider pure thermal and pure oscillator
motion.

Thus, generally the appropriate closure changes within a given Riemann solution.

11. Conclusions and perspectives

In this paper we have established a rigorous micro–macro transition for the atomic chain that
serves as a simple model of a solid body.

The microscopic dynamics of the atomic chain is based on the Newtonian equations of
motion for its microsopic particles.

The Newtonian equations imply macroscopic conservation laws and unique
representations that uniquely link the thermodynamic quantities to the trajectories of the
microscopic particles. This link is established by a window function of time and space.

The conservation laws become field equations for the thermodynamic variables if they are
supplemented by macroscopic closure relations. For large particle numbersN and for given
initial data the closure relations follow from the properties of the microscopic dynamics. The
closure relations rely on two facts:

(1) We have only considered Riemannian initial data that lead exclusively to the propagation of
waves. This special class of initial data imply macroscopic solutions of the microscopic
dynamics that exhibit a special scaling behaviour admiting exclusively states of local
equilibria.

(2) The corresponding statistical distributions of the atomic distances and velocities determine
completely the microscopic motion and the form of the macroscopic field equations.

However, we could easily find initial data, such that their temporal development on the
macroscale cannot be decribed by a single closure relation. If this happens, the macroscopic
quantities cannot be calculated from macroscopic field equations; rather they can only be
adequately calculated from their microscopic representations.
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In fact, we have considered three different kinds of closure relations, and they are found
to be realized in arbitrary large regions of space–time for given initial data.

The observed scaling behaviour, whereupon time and space are equally scaled by the
particle number, results because we considered exlusively initial data that lead to the formation
of wave motion on the macroscopic scale. In a further study we shall consider different initial
data, that lead to diffusional motion on the macroscale. Preliminary studies have already
shown, that initial contact discontinuities imply a scaling where time and space are treated
differently with the particle number.

However, with respect to diffusional motion we must leave the restriction of one-
dimensionality. Furthermore, we shall establish the micro–macro transition for a gaseous
body. This is necessary because a gaseous body will not confront us with the problem of several
kinds of microscopic equilibria, so that we can study the pure scaling behaviour without any
interference with the non-uniqueness of local equilibria which we have met in the solid body.
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